Package: priorityelasticnet 0.1.0
priorityelasticnet: Comprehensive Analysis of Multi-Omics Data Using an Offset-Based Method
Priority-ElasticNet extends the Priority-LASSO method (Klau et al. (2018) <doi:10.1186/s12859-018-2344-6>) by incorporating the ElasticNet penalty, allowing for both L1 and L2 regularization. This approach fits successive ElasticNet models for several blocks of (omics) data with different priorities, using the predicted values from each block as an offset for the subsequent block. It also offers robust options to handle block-wise missingness in multi-omics data, improving the flexibility and applicability of the model in the presence of incomplete datasets.
Authors:
priorityelasticnet_0.1.0.tar.gz
priorityelasticnet_0.1.0.zip(r-4.5)priorityelasticnet_0.1.0.zip(r-4.4)priorityelasticnet_0.1.0.zip(r-4.3)
priorityelasticnet_0.1.0.tgz(r-4.4-any)priorityelasticnet_0.1.0.tgz(r-4.3-any)
priorityelasticnet_0.1.0.tar.gz(r-4.5-noble)priorityelasticnet_0.1.0.tar.gz(r-4.4-noble)
priorityelasticnet_0.1.0.tgz(r-4.4-emscripten)priorityelasticnet_0.1.0.tgz(r-4.3-emscripten)
priorityelasticnet.pdf |priorityelasticnet.html✨
priorityelasticnet/json (API)
# Install 'priorityelasticnet' in R: |
install.packages('priorityelasticnet', repos = c('https://statleila.r-universe.dev', 'https://cloud.r-project.org')) |
- Pen_Data - Simulated Patient Data for Binary Classification
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 18 hours agofrom:acb19b3cf0. Checks:5 OK, 2 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 14 2025 |
R-4.5-win | OK | Jan 14 2025 |
R-4.5-linux | OK | Jan 14 2025 |
R-4.4-win | OK | Jan 14 2025 |
R-4.4-mac | OK | Jan 14 2025 |
R-4.3-win | NOTE | Jan 14 2025 |
R-4.3-mac | NOTE | Jan 14 2025 |
Exports:cvm_priorityelasticnetmissing.controlpriorityelasticnetweightedThreshold
Dependencies:backportsbase64encbayestestRbootbroombslibcachemcaretcheckmateclasscliclockcodetoolscolorspacecommonmarkcpp11crayoncvmsdata.tabledatawizarddiagramdigestdplyre1071fansifarverfastmapfontawesomeforeachfsfuturefuture.applygenericsggplot2glmnetglobalsgluegowergroupdata2gtablehardhathtmltoolshttpuvinsightipredisobanditeratorsjquerylibjsonliteKernSmoothlabelinglaterlatticelavalifecyclelistenvlme4lubridatemagrittrMASSMatrixmemoisemgcvmimeminqaModelMetricsMuMInmunsellnlmenloptrnnetnumbersnumDerivparallellyparameterspillarpkgconfigplotrixplyrpROCprodlimprogressrpromisesproxyPRROCpurrrR6rappdirsrbibutilsRColorBrewerRcppRcppEigenRdpackrearrrrecipesreformulasreshape2rlangrpartsassscalesshapeshinysourcetoolsSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithrxtable
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Calculates the offsets for the current block | calculate_offsets |
Extract coefficients from a priorityelasticnet object | coef.priorityelasticnet |
Compare the rows of a matrix with a pattern | compare_boolean |
priorityelasticnet with several block specifications | cvm_priorityelasticnet |
Construct control structures for handling of missing data for 'priorityelasticnet' | missing.control |
Simulated Patient Data for Binary Classification | Pen_Data |
Predictions from priorityelasticnet | predict.priorityelasticnet |
Priority Elastic Net for High-Dimensional Data | priorityelasticnet |
A Shiny App for Model Evaluation and Weighted Threshold Optimization | weightedThreshold |